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by

P. A. Jacobs

and

P. A. W. Lewis

Operations Research Department
Naval Postgraduate School

Monterey, California 93940

ABSTRACT

Two simple stationary processes of discrete random

variables with arbitrarily chosen first-order marginal

distributions, DARMA(p,N+Il) and NDARMA(p,N), are given. The

correlation structure of these processes mimics that of the

usual linear ARMA(p,q) processes. The relationship of these

processes to mover-stayer models, and to models for discrete

time series given separately by Lindqvist and Pegram is discussed.

Ad-hoc nonparametric estimators for the parameters in the

DARMA(p,N+l) and NDARMA(p,N) are given. A simulation study

shows them to be as good as maximum likelihood estimators for

the first-order autoregressive case, and to be much simpler to

compute than the maximum likelihood estimators.
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1. INTRODUCTION

Discrete time series arise in many different contexts.

For example the exact arrival times in an arrival process are

usually not measured. Instead the number of arrivals in suc-

cessive time intervals are given. This is the case with the

statistics published by the Center for Disease Control on the

incidence of various diseases in the United States. The data

are given as the number of occurrences of each disease in suc-

cessive days. If the time intervals are short enough and the

arrival process is orderly, then the resulting time series is

approximately binary. In other instances the process that is

being measured is continuous but the data is quantized in

recording. For example, the amount of rainfall in a day

(24 hours) at a locatio4 given that some occurs, is a continu-

ous random variable; however, it is often recorded to the

nearest one-hundredth or one-tenth of an inch. Also, since a

rainfall series will often contain many zeros (no rain), an

analysis is often made of successive wet and dry days which is

a binary time series [cf. Buishand, 1978]. An economic impera-

tive for modelling and predicting the binary rainfall series is

that it is the primary concomittant variable for predicting

volume of business done in some establishments on successive days.

Markov chains have been used as models for stationary

discrete time series. However, they are overparametrized for

statistical purposes. Further, the data to be modelled can

often be shown to be non-Markovian, or at least not first-order

Markovian. Higher order Markov chains can be used but this only

aggravates the problem of overparametrization.



In the past several years various parametrically simple

models have been proposed for stationary discrete time series.

The models have as parameters the fixed, first-order marginal

distribution of the time series and the correlation structure.

In Jacobs and Lewis [1978a, 1978b] a simple scheme is given for

obtaining a stationary sequence of discrete random variables with

a given marginal probability mass function f and an autocor-

relation structure like that of a mixed first-order autoregres-

sive-(N+l)st-order moving average process. This DARMA(1, N+l)

process has nonnegative correlations and a possibly countably

infinite state space. The correlation structure is determined by

parameters that are independent of the marginal distribution.

A special case of the DARMA(1, N+l) process with mar-

ginal probability mass function n is the DAR(l) process.

This is a Markov chain with discrete state space IE and with

transition matrix

(1.1) P = P1 + (l-P)Q

where Q is a matrix with Qij = n(j) for i,jEI; I is the

identity matrix with (i,j) element Iij and 0 < p < 1 . The

correlation structure of a real valued DAR(l) i.e. one for which

IE is a subset of the real line, is that of a first-order auto-

regressive process with kth-order serial correlation equal to
kp There is no limitation on n ; a common and useful assump-

tion is that it be Poisson and therefore have an infinite state

space. The DAR(l) model with a finite state space is a special

case of the mover-stayer model [Bhat, 1972, p. 302-9].

Lindqvist [1978] studied a real valued finite state

space Markov chain with a transition function of the form
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(1.2) Pij = ci.. + (1-c) Q.1)Qij

where Q = (j), for i, j(E as before. Since the state space

IE is finite, the constant c can take on some negative

values with the constraint that

(1.3) max [1 - (li(i))-1] < c < 1
l<i<r

where r is the number of elements in the state space.

In Jacobs and Lewis [1978c], the DAR(l) process was

extended to obtain a sequence of discrete random variables

with pth order Markov dependence and given marginal distri-

bution. The DAR(p) process is defined as follows. Let {V }

be a sequence of independent identically distributed random

variables with P{V n = 1} = 1 - P{V n = 0} = 1 - p,

0 < p < 1; {An) is a sequence of independent identically

distributed random variables taking values (l,2,...p} with

P{A n = ii = a., i = 1,2,...,p; and {Y n } is a sequence of

independent identically distributed random variables with

discrete state space IE and P{Yn = i} = n(i). Let

(1.4) Zn = VnZnA + (1-Vn •
n

The process {Z n  is called a DAR(p) process. Note that by

direct argument from (1.4)

3



(1.5) Pizn+ I = jlZn = i,...,Znp+ ip

= (l-p) 7T(j) + j Pak£ E ik)
k=l

where eW(i) = 1 if i = j and Ej(i) = 0 otherwise. Therc

is nolimitation on the marginal probability mass function .

Pegram [1980] considers a real-valued finite state space

model {Zn } which is a generalization of the DAR(p) model in that

its conditional probabilities are of the form

(1.6) P{ZI. = j1Z = il''' -l

P P
= [1- I Ok IN(j) + I kC(ik)

k=l k=l

where {pk; k=l,...,p} are (possibly) negative constants. Note

that although some of the constants k may be negative, the

admissible values for {Pk} depends on the marginal distribution

71. It was shown in Jacobs and Lewis, [1978c] that

Corr(Zn, Z n+k), k=l,2,... for the real valued DAR(p) process

are nonnegative. Pegram's model allows some of the correlations

to be negative. The amount of negative correlation as in

Lindqvist's model, depends on the marginal distribution 7.

In this paper we will consider models for real-valued

stationary discrete time series whose nonnegative correlation

structure is that of a mixed pth-order autoregressive and qth-order

moving average process. Thus we have a generalization of all

4



of the preceding models. In Section 2 we will give definitions

of two such models, DARMA(p,N+l) (discrete mixed autoregressive-

moving average process with orders p and N+l respectively)

and NDARMA(p,N). We briefly describe some of their properties

and suggest an estimate for the correlations. In Section 3

we describe in detail a simulation experiment that was done

to study the behavior of various estimators for the first order

serial correlation coefficients p of the DAR(l) model for

small and moderate sample sizes. In Section 4 some extensions

of the DARMA models are briefly discussed including one which

can have negative correlations. Throughout the remainder of

the paper we will assume that the NDARMA and DARMA processes

are real valued. They can in fact be used to model categorical

time series, but then numerical measures such as correlations

are meaningless.

5



2. The DARMA(p,N+l) and NDARMA(p,N) Processes.

In what follows we let {Yn } be a sequence of independ-

ent identically distributed random variables taking values in

a real-valued discrete state space IE with P{Y = i = Tr(i),

icIE. Let {Un } and {Vn} be independent sequences of independ-

ent random variables taking the values 0 and 1 with

(2.1) P{U n = 1 = 8 and P{V n = i}=

for fixed 0 < < 1 and 0 < p < 1. Let {Dn } be a sequencen
of independent identically distributed random variables taking

values 0,1,2,... ,N with P{Dk = n} = 6 n , n = 0,1,...,N, and

{AN } be a sequence of independent identically distributed

random variables taking values 1,2,...,p with P{Ak = n1 = an

n = 1,2,...,p.

2.1 The DARMA(p,N+l) process.

The DARMA(p,N+I) process is a sequence of random

variables {Xn I which is formed according to the probabilistic

linear model

(2.2) Xn = UnYnD + (1 - Un ) z n _ ( N + l )

for n = 1,2,..., where the "autoregressive tail" is

(2.3) Z = VnZn A  + (l- Vn)Y n
n

6
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p

for n = -N-p+l, -N-p+2,.... This process differs

from the DARMA(I,N+l) process defined in Jacobs and Lewis

[1978a] in that the "autoregressive tail" Zn is now the pth

order autoregressive process of (1.4). In Jacobs and Lewis

[1978c], it was shown that the vector-valued Markov chain

{(Zn, Zn+l, ..., Z np+) , n = 1,2,...} has a limiting joint

probability mass function v with marginal probability mass

function ff. Hence, if (ZN-p+I,..., Z_N) has joint probability

mass function v , then {Xn; n = 1,2,...} is a stationary

process with marginal probability mass function 7.

Let r(k) = Corr(Xn, Xn+k) for the stationary process.

Then {r(k)} can be shown to satisfy the following system of

equations:

N-1I
(2.4) r(1) = 2 1 6i6i+l + (l-)rB(1) + (l-) 2rA(I)

i=0

2 N-2 2
(2.5) r(2) = a 1 6i6i+2 + i-P) rB(2) + (i- ) 2rA( 2)

i=O

(2.6) r(N) = 2606N + (l-a)rB (N) + (1-8) r (N)

(2.7) r(N+k) = (l-.) rB(N+k) + (l-a) 2 rA (N+k) . k > 1.

In these equations

(2.8) rA(k) = Corr(Zn, Zn+ k  k > 1,

7



which satisfy the following Yule-Walker equations:

(2.9) rA(1) = PalrA(0) + Pa 2 rA(1) + ... + PaprA(P-1) ,

(2.10) rA (2) = PairA(1) + Pot 2rA(0) + ... + papr(p-2) ,

(2.11) rA(p) = palrA(P-1) + Pc 2rA(p-
2 ) + ... +'paprA0) ,

and for k > 1,

(2.12) rA(P+k) PalrA(p+k-i) + Pa 2rA(P+k-2) + ... + paprA(k)

where rA(0) = l.

In addition

N
rB(i) = Corr(Zn+i-(N+l)' Yn-D =0 Corr(Z+i(N+1), Y

n j=0 n-J

is obtained recursively as

rB (0) = 0 ;

r B(1) (l-0 6 N

rB( 2) P 1irB(1) + (I-P)6N_ 1

k-l
rB(k) = PirB (k-i) + (l-p) 6 N-(k-1)

i=l

for k < min(p,N)



rB(k) = Pai rB (k-i) + (l-p) 6N-(k-1)

for max(p,N) > k > min(p,N);

r B (k) = a Pi r B(k-i)

for k > max(p,N)

To see that the serial correlations for the DARMA(p,N+l)

process are all nonnegative let q(i) (respectively qA(i)) be

the probability that Xn and Xn+i (respectively Zn and

z n+i ) choose the same random variable Yk ' where, because of

the backward definition of the autoregression k < n. Then

q(i) (respectively qA(i)) also satisfy equations (2.4) - (2.7)

(respectively (2.9) - (2.12)) and since they are nonnegative,

so are the serial correlations.

To see this identity, let R be the random index ofn

the Yk' k < n, that Xn chooses; that is,

Xn = YR
n

Then, since the random variables R are independent of then

random variables,

9



(2.13) E[XnX+] E [YR nYR]n,

n ri
= 2EY P{R =Rn+ =k

k=l n+ n n

R nk R n+r
PR = k, R = j

k=1 j=1 [Y Jn--
j k

(2.14) E ] P{Rn R n+}

+ E [Y1 ]2 P(% R+

Thus

Cov(Xn , Xn+Z)= E[Y2] P{Rn =Rn+

(2.15) YVar [ 2 P{Rn P Rn= R 1

Therefore

(2.16) Corr(X n , Xn+i) = P{R n = R n+ } = q(k)

as asserted above.

This identity will also be used in the estimation

procedure proposed in Section 3 for the serial correlations.

10



2.2 The NDARMA(p,N) process

In this subsection we will define another related

discrete time series with the correlation structure of a mixed

moving average autoregressive process. This new process is

more reminiscent of the linear ARMA(p,N) process. The key idea

that leads to this new model is that a probabilistic mixture of

a finite number of random variables each with probability mass

function n has probability mass function 7 even if the

random variables are dependent. Thus it is not necessary to

define the autoregression via an autoregressive tail, as in the

DARMA(p,N+l) process; the autoregression can be made explicit,

as in the usual (normal theory) linear processes.

Thus let

(2.17) X = V X + (1-Vn)ynDn(21)X nnAn

where {V }, {A }, and {D ) are as before. Thus, with prob-

n n n

ability P, Xn is one of the p previous values

Xn-l,*.Xn-p and with probability (l-p) it is a mixture of

the previous Yk's , n - N < k < n. Note that if p = 0,

then {Xn; n = 1,2,...} is a DMA(N) process as defined in

Jacobs and Lewis [1978a]. If P{D = 0) = 1, then {X is
n n

a DAR(p) process as defined in Jacobs and Lewis [1978c].
Let T = inf{i 6. > 0} . Note that

1

Z = {(Xn ' Xn-i ' Xn-p+l ' Yn-T '' Yn-N ) , n = 1,2,....

is a Markov Chain with state space IF which is equal to the

product space of IE with itself p + (N-T) times. Since

11



P{X Y .'Y} > (l-p)6 i(j),n+i+l =n+l = IOi* 1X~ O1  *I .. TX'o

there is a set J=IF such that min P{Z+K = = 4} = y > 0 ,

KJ

where

K = P + N and

j {Xn+K = yn+K- r' Xn+K-1 = Yn+K-1-''''' Xn+K-p+l = Yn+K-p+l-t }

Thus the condition of case (b) on page 173 of Doob [1953] is

satisfied. The proof on pages173 and 174 extended to countable

state spaces shows that kn has a limiting probability mass

function v as n - ; further the convergence of the con-

ditional distribution of kn to v as n- - is geometric.

The marginal probability mass function of v is 7 .

It follows from (2.17) that the serial correlations

for the stationary NDARMA(p,N) process satisfy the Yule-Walker

equations for the ARMA(p,N) process with restrictions on the

range of the coefficients;

(2.19) rN(k) H Corr(Xn, Xn+k)

p
Pai Corr(Xn , Xn+k-i)i=l n nkj

N
+ (l-p) I 6.Corr(X n  Y

i=k i n n+k-i

12



for k > 0 .The correlations rNBi W Corr(X , Y 4 canNB n n-i
be computed recursively as follows. For i =0

(2.20) r NB (0) = (l-p06 0

for 1 < i < p

r NB U) =+ Pa lrNB(i-l) + .. + Pa ir 0

and for i > p

rNBi M (1-06iS + Pa r U-ij)
j=l

where if i >N, then 6. =0 by convention.

13



Hence, if we assume N < p

(2.21) rN(k) pa cirN(k-1) + Pa 2 rN(k- 2 ) + ... + Pa PrN(P-k)

N
+ (l-p) 1 rNB(i-k)

i =k

for 1 < k < N

(2.22) rN(k) Pa lrN(k-l) + Pa 2 rN(k-2 ) + ... + paprN(k-p)

for k > N .

The serial correlations of the NDARMA(p,N) process are

nonnegative since, if qN(i) is the probability that Xn and

Xn+i choose the same random variable Yk , k < n , then

{qN(i)} satisfies equations (2.21) and (2.22). The argument

is the same as for the DARMA(p,N+l) case.

2.3 Comparison of Admissible Range of Correlations for the

DARMA(l,l) and the NDARMA(l,l).

Let {X n I be a stationary DARMA(l,l) process; that is,

(2.23) Fyn with probability 8,

x =
n

Z Z-l with probability 1-B,

14



where

(2.24) 'Zn-l with probability p,

Z

Y n with probability i-p.

Equations (2.4) - (2.12) for the DARMA(p,N+l) correlations

simplify to

(2.25) r(k) = Corr(Xn Xn+k) = k-1(1-)[(-p) + (l-a)p]

Similarly let {X'n} be a stationary NDARMA(l,l) process;

that is

X' 1  with probability p,

n n(2.26) n  Ynwith probability (l-p)60 ,

Yn-i with probability (l-p) (1-6)

Equations (2.21) and (2.22) simplify to

(2.27) rN(k) = Corr(X = EP + (l-p) 2 6(1-60)
N n n+k) = p 0 0

Figure 1 gives graphs of the attainable values of

{rN(2 ), rN(1)} as the parameter values p and 60 vary, and

{r(2), r(1)} as the parameters p and a vary. Note that

although the set of attainable correlations for the NDARMA(l,l)

process is not strictly contained in that for the DARMA(1,l)

15
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process, it is much smaller. Thus, the DARMA(l,l) model appears

to be broader than the NDARMA(l,l) model. The smaller region

of possible correlation pairs for the NDARMA(l,l) model seems to

be a constraint due to the explicit autoregression on Xn 1

2.4 An Estimator for the Serial Correlations of the

DARMA(p,N+l) and NDARMA(p,N) processes.

The usual estimator for the serial correlations of a

stationary real-valued sequence {Xl,... , Xm } is

2 1 m-k

(2.28) r([) = [I- (m-£)-l m (X. - X)(X - X)j=l +

where m
(2 .2 9 ) X = -

x~m I X.
j=l 3

and
m -

(2.30) S2 (X X)X -m-i 1  (j -X

In this subsection we will suggest another estimator

for the serial correlations of the DARMA and NDARMA processes.

By the remarks at the ends of Sections 2.1 and 2.2,

the £th serial correlation, r(k), for both the stationary

DARMA(p,N+l) and NDARMA(p,N) processes is equal to the prob-

ability that Xn and Xn+Z choose the same Yk , k < n

Hence, for both processes for i j,

17



P{Xn = i, xn+Z =j P{YR YRn j
n n4-Q

= P{R n = k, Rn+P = r} = i, Yr = jr
kin r<n+z

Since the fYk } random variables are independent, and independent

of R and R , we have
n n+k

(2.31) P{Xn = i, X = j = IT(i)h(j)P{Rn / Rn+Z }

= r(i)Tr(j) [I - r£

by equation (2.16).

Thus, for j E IE

-1 N-m
(2.32) lim BN(m,j) I lim (N-m) 1 1 i (X k) 1 (Xk+m)

N o N-o i/j k=l

= [l-I(j) [l-r(m)] 7(j)

almost surely where 1i(x) = 1 if x i and 0 otherwise.

Hence

(2.33) r(m) = 1 - BN(m,j)[ 1  (j)]-

is a strongly consistent estimator for the mth serial correla-

tion for the stationary DARMA and NDARMA processes.

18



Estimator r(m) is also a strongly consistent estimator for

the finite state space models of Lindqvist(1978) and Pegram

(1980) since the conditional probabilities (1.2) and (1.6)

are of the same form as those for the appropriate DAR(p)

process.

In the next section we pursue this estimator for the

special case of the first-order autoregressive process DAR(l).

19

1- A
._, ..



3. ESTIMATION FOR THE DAR(l) PROCESS

Let {X n  be a stationary DAR(l) process with state

space 1E= {O,1,...} and first-order serial correlation p

0 < p < 1 ; that is,

1 n -1 with probability p

(3.1) X {n~
with probability 1-p

for n = 1,2,..., while X0  is a random variable independent

of {Yn} but with the same probability mass function.

A simulation was conducted to study the performance of

several estimator for p for small to moderate series lengths

m . The series lengths considered were m = 20, 50, and 200.

The marginal probability mass functions considered were the

Poisson with parameter A ,

(3.2) n(k) = e- A k = 0,1,...~k!

and the geometric with parameter p

(3.3) T(k) = p k(l-p) k = 0,1,....

One type of estimator considered was the single param-

eter maximum likelihood estimator. For a series of length m

let N.. denote the number of times the DAR(l) process goes

from i to j , for i, jFJE and let N. denote the total

2
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number of times the process is in state j The log-likelihood

function for a DAR(l) series {Xl, ... ,Xm  of length m is

(3.4) L = N.. £n[(l-p)h(j)]
i=0 jOi ij

00

+ N.. £n[l - (l-p)7r(i)]
i=O "

00

+ Y li(X) 7r(i)
i=O

Taking the partial derivative of L with respect to x = 1-p

and setting the derivative equal to zero results, after some

simplification, in the following equation for the maximum likeli-
A A

hood estimator x = 1-p , if it exists:

1 00A(3.5) f(x) -= 1 N 1 I  Nii {l - x[l - 7(i)]} 0

i=0

Note that f(x) is monotone decreasing in x and f(O) > 0

Hence, if there is a solution to (3.5) in [0,11, it will be

unique.

The ad-hoc estimator of p qiven at (2.33) was also

considered. For the DAR(l) process this estimator is

(3.6) p= 1 - [N-l I N ij][l _-(j)I-
j=0 i=0

21



The summations in both the maximum likelihood estimators

and the estimators of the form (3.6) for the Poisson case

(respectively the geometric case) were restricted to be between

a = max[l, n_(P-7o)] (respectively a = max(l, n_(p-10o))

and b = n+ (p+7c) (respectively n+ (p+10o));here n_(y) (respectively

n+(y)) is the largest (respectively smallest) integer less

(respectively greater) than y

Equation (3.5) was solved numerically. In the case

N = 20 , it was not uncommon that f(x) did not have a zero in

[0,1]. In this case, if f(l) > 0 , then x was set equal to

1 ; that is, p = 0 . If f(0) = 0 , then x was taken to be

0 ; that is, p = 1 .

Other estimators for p that were considered included

the following:

1. The usual estimate for first-order serial correlation,

(3.7) Pl = [$2- (m-1)- (X n- X)(Xn+l - X ) A

n=l

where R and S 2 are as in (2.29) and (2.30). If S 2 = 0

then p1 was set equal to 1

2. The maximum likelihood equation (3.5) was solved numer-

ically for p for each of the following three values for w(j):

a. the known distribution (3.2) or (3.3) with known

parameter A or p was used; P2 denotes this estimator;

b. the known distribution with an estimated parameter

was used; that is,
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kI
(3.8) 7T == X

or

(3.9) r(k) = k (l-p) where p =[l +

P3 denotes this estimator;

c. the nonparametric estimator r(j) = N - N. of
3

f(j) was used; p4 denotes this estimator.

d. p5 is the estimator of P resulting from the two-

dimensional maximum likelihood estimator where the other

parameter is the distribution parameter (X or p);

3. the estimate P6 is the nonparametric estimate

(3.6) using N - N. as the estimate for T(j) ;
3

4. the estimate P7 is the nonparametric estimate

(3.6) using the true value of 7r(j) ;

Both estimators p6 and P7 can have negative values

for small to moderate sample sizes. Hence, we also considered the

following estimate.

5. Estimator p8 = max(p6 " 0 ).

3.2 The sampling experiment.

A DAR(l) series of length m was simulated and the

estimates for p were computed. The computation was repeated

for 1000 independent replications and the sample mean, sample

variance, and sample root mean square error were computed. Each

experiment was then repeated for 20 independent replications,
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and the mean of the means, mean of the standard deviations, and

mean of the root mean square errors were computed. Tables 1-3

give the means of the root mean square errors for the cases

studied. The box plots of row values appearing in the last

column of the table are given to help the reader to summarize

the performance of the 8 estimators across the 7 cases considered.

All runs were performed on an IBM system 360/67 computer

at the Naval Postgraduate School using the LLRANDOM package

[Learmonth and Lewis, 1973] which generates numbers according

to the scheme given by Lewis, Goodman, and Miller [1969]. Tests

of the random number generator are given in Learmonth and Lewis

[1974].

Among all the estimates of p , the usual first-order

serial correlation estimator, pI' performs least well. The

maximum likelihood estimator with smallest root mean square

error tends to be P2 , although by the time m = 200 the

difference is minor. Of course the value of p or X would

not be known in general, so that this estimator is unrealistic.

Maximum likelihood estimators p3 and p5 are about equiva-

lent, indicating that the extra computational complexity of

the two-parameter maximum likelihood estimator, P5 ' is not

necessary. The performance of the nonparametric estimator P8

is about the same or sometimes better than that of the maximum

likelihood estimator P4 , especially if, for small sample size

(m=20), the modification p8 = max(P6'0) is used. This sug-

gests that the ad-hoc estimator of (3.6) altered to give values

in the range [0,1] is almost as good as the maximum likelihood

24



estimator with the same estimate for n(j) The ad-hoc

estimator is much easier to compute than the maximum likelihood

estimator.
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4. EXTENSIONS

Since the process {X I is obtained as a probabilistic
n

mixture of the {Y n, the DARMA and NDARMA process may be defined
n

using any sequence of independent identically distributed random

variables {Yn } . One implication is that DARMA and NDARMAn

processes may have a continuous marginal distribution. However,

even if the distribution of Y is continuous, a realization
n

of the sequence IXn } will, in general, contain many runs of a

single value. This seems to be the major drawback to using

DARMA and NDARMA processes to obtain a sequence of dependent

random variables with a specified continuous distribution and

correlation structure. However, the process with continuous

marginals may be useful in simulation studies.

Multivariate DARMA and NDARMA processes may be obtained

by using a sequence of multivariate Yn's . To illustrate this

we generate DARMA and NDARMA-like processes having negative

correlations. These can be derived from bivariate processes

as follows.

Let {(Y n(1), Y n(-l))} be a sequence of independent

bivariate random variables with state space E= {0,+ ,...

marginal probability mass function u , and correlation

r = Corr(Y n(1), Yn (-l)) which will be negative in general. One

way to generate such a sequence is to note that a random vari-

able Y (1) with probability mass function 7 can be simulatedn

from a uniform [0,11 random variable by defining

j-1 i

(4.1) Y n(1) = j if I i(i) < U 1 7T
i=-29 i= -
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If Y n(-1) is generated by

j-1
(4.2) Y(-1) = j if I I(i) < 1 - U < I i(i)i = -  i= -C

then (Yn (1), Yn (-l)) is called an antithetic pair. If n is

symmetric about zero, then Y (1) = - Y (-l) , and
n n

r Corr(Y (1), Y = -i

A bivariate DARMA (p,N+l) process {(X (1), X (-l))}

is defined as follows. Let {a0 , ... ,a and {bO,...,bN } be
pN

fixed sequences of numbers that are either -1 or 1 . Let

(4.3) Xn (1) UnYnD (bDn) + (I-U )zn(NI) (a 0 )

(4.) n1 n Un-nD (Db n + l -Z(N+l) (0 )

n n

(4.4) Xn(-l) = UnYn_ (-b D  + (I-Un) ZnN (-a )
n n -D n D nn n-Nl 0

for n = 1,2,...

where

(4.5) Zn(a 0 ) = VnZnA (aA) + (1-Vn)Yn(a 0 )
n n

(4.6) Zn(-a 0) = VnZ n-A n(-a An) + (1-Vn)Yn(-a 0)

for n = -N, -N+l,... where {A n  and {Dn I are as in Section

2. The random variable Xn(-1) is called the dual of Xn(1)

30



or the antithetic when (4.1) and (4.2) hold for the {Y n} pair.

Note that if (4.1) and (4.2) hold and fr is symmetric about

zero, then Z n(-1) =- Z n(1) and X n(-l) =- Xn (1)

A bivariate NDARMA(p,q) proce. (Xn(1), Xn (-l)) can

be defined similarly:

(4.7) Xn(l) = VnX-An (aAn) +(l-Vn)Yn-D n(bDn)

(4.8) Xn(-1) = VnXAn (-a A) + (l-Vn)YnD (-bD
nnnAn n n nn D n

The stationary bivariate DAPMA and NDARMA processes

will have marginal probability mass function 7 . A process

having possibly negative correlations can be obtained by consider
XI I

the marginal processes X n(1)1}, {X n(-l)}, { n(l)}, {X n(-1)1

Details will be given elsewhere.
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